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Multi-Objective Optimization (MOO) metaheuristics
are commonly used for solving complex MOO prob-
lems characterized by non-convexity, multimodality,
mixed-types variables, non-linearity, and other com-
plexities. However, often metaheuristics suffer from
slow convergence. Opposition-Based Learning (OBL)
has been successfully used in the past for acceleration
of single-objective metaheuristics. The most success-
ful example in this regard is Opposition-based Dif-
ferential Evolution (ODE). However, OBL was not
fully explored for MOO metaheuristics. Therefore, in
this paper, to the best of our knowledge, for the first
time OBL is successfully adapted for a MOO meta-
heuristic by using a single population (no coevolution).
The proposed MOO metaheuristic is based on the
GDE3 method and it is called Opposition-based GDE3
(OGDE3). OGDE3 utilizes OBL for opposition-based
population initialization and self-adaptive opposition-
based generating jumping. Furthermore, the new al-
gorithm is compared with seven state-of-the-art MOO
metaheuristics using the ZDT test suite. OGDE3 out-
performed the other algorithms; the results are ex-
plained and discussed in detail.
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1. Introduction

Most real-world engineering problems require the opti-
mization of multiple conflicting objectives [1]. For exam-
ple, while designing a power system, electrical engineers
are targeting competing objectives such as cost minimiza-
tion, performance maximization, supply-demand balanc-
ing, and so forth. Such problems are called Multi-
Objective Optimization (MOO) problems. The solution
to a MOO problem is not a single solution. Rather, it
is a set of non-dominated solutions, called a Pareto opti-
mal set. When the real optimal solutions (Pareto-optimal)
are plotted in an objective space, they are called a Pareto
front.

The majority of real-world problems is very complex
and cannot be solved by classical optimization methods.

Therefore, it is common to use metaheuristics which op-
timize a problem by iteratively trying to improve can-
didate solutions. Especially, MOO metaheuristics are
widely used to solve MOO problems characterized by
non-differentiability, non-convexity, nonlinearity, multi-
modality, mixed-types variables, and other types of com-
plexities. However, despite being efficient for many real-
world MOO problems, MOO metaheuristics can suffer,
depending on the complexity of the problem, from slow
convergence speed. They can take over million function
calls to find the real front [2]. Hence, MOO metaheuris-
tics convergence speed is an open, unresolved and chal-
lenging research problem.

One reason for this slowness is due to metaheuristics
generating initially random solutions. Then, the meta-
heuristic tries to converge towards optimal solutions. If
random points are generated close to the optimal solu-
tions, it can result in fast convergence. Otherwise, if ran-
dom guesses are generated far from an existing solution,
in a worst case in the opposite location, then the conver-
gence will become much slower or even intractable. Over-
all, in the absence of any a priori knowledge about the
problem to optimize, it is not possible to make a good ini-
tial guess. Therefore, all directions should be considered
simultaneously, or more practically, the opposite direction
should be considered, which is called Opposition-Based
Learning (OBL). Rahnamayan et al. [3] proved math-
ematically and experimentally that the use of opposite
points is more efficient than a pure random exploration.

In this paper, OBL is applied to a state-of-the-art
MOO metaheuristic called third Generalized Differen-
tiation Evolution (GDE3) to accelerate its convergence
speed. The proposed algorithm, called an Opposition-
based third Generalized Differentiation Evolution algo-
rithm (OGDE3), is compared with seven state-of-the-art
MOO metaheuristics including its parent algorithm GDE3
against the Zitzler-Deb-Thiele (ZDT) test suite [4]. The
results are promising and they are presented and discussed
in detail in this paper.

The remainder of the paper is organized as follows.
Sections 2 and 3 cover the MOO background and oppo-
sition based learning concepts, respectively. Section 4
explains the proposed algorithm, OGDE3. Section 5
presents experimental verifications. Finally, Section 6
concludes the paper.
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Fig. 1. Pareto front schematic [5].

2. Multi-Objective Optimization:
A Background Review

As defined earlier, metaheuristics are computational
methods which optimize a problem by iteratively trying to
improve candidate solutions. In theory, they do not guar-
antee optimality, but they do provide feasible good solu-
tions. Practically, they provide optimal or close to optimal
solutions depending on the complexity of the problem.

An MOO problem can be formulated as follows:

MinF (x) = [ f1 (x) , f2 (x) , . . . , fk (x)]

s.t.

gi (x) ≥ 0, i = 1, 2, . . . , m

hi (x) = 0, i = 1, 2, . . . , p

where x is a vector of decision variables for the optimiza-
tion problem, fi (x) are objective functions, gi (x) are un-
equal constraints, and hi (x) are equal constraints.

An important aspect of MOO problems is the best
trade-off (or compromise) among the different conflicting
objectives. By compromising one objective, it is possi-
ble to improve another or other objectives. For practical
reasons, especially in engineering systems, stakeholders
are interested in viewing a variety of these candidate so-
lutions in order to choose the most appropriate solution.
As shown in Fig. 1, for example, an energy system design
might involve two objectives, such as cost and pollution.
One solution might be inexpensive but very polluting such
as solution f in Fig. 1, while another solution can be af-
fordable but more polluting such as solutions c,d, or e. A
last solution can be very expensive but almost no pollu-
tion such as solution a. The optimal solutions which are
non-dominated (a,b,c,d,e, f ) are called the Pareto opti-
mal set. Each solution is presented with a vector, and
there are objective functions to calculate the fitness values
for each candidate. The plot of the combined objective
functions of Pareto optimal sets are collectively known as
the Pareto front.

There are two main targets when using metaheuristics
to solve MOO problems. First, the solutions should con-

verge towards the global optimum. Second, the solutions
should be uniformly distributed (diverse) so that the user
can have a variety of choices [6]. Ideally, the Pareto
set should capture the complete spectrum of the Pareto
front. However, despite the advantages of metaheuristics,
they can be computationally expensive for solving com-
plex problems due to the slow nature of the iterative pro-
cess. The state-of-the-art algorithms may require thou-
sands to millions function calls [2]. Thus, an efficient
multi-objective optimization method should generate ac-
curate and diverse solutions in a timely manner. To accel-
erate the search space exploration, it is proposed in this
paper to use the OBL concept described in the next sec-
tion.

3. Opposition-Based Learning (OBL)

Opposition concepts have been used for decades in sev-
eral fields. The following list gives some examples [7].

• Opposite particles/elements (physics)

• Antonyms (language)

• Antithetic variables (simulation)

• Opposite proverbs (culture)

• Complements (set theory)

• Opposition party (politics)

• Inverter (digital design)

• Dualism (philosophy and religion)

• Classical elements (archetype)

• If-then-else (algorithm)

• Complement of an event (probability)

• Revolution (social-politics)

In a similar way, the concept of OBL has been intro-
duced by Tizhoosh [8] for computational intelligence be-
cause often a machine learning algorithm starts with ini-
tial random points. Then, the algorithm tries to move,
hopefully, towards an existing solution. For example, neu-
ral network weights, self organising map nodes, and a
genetic algorithm population are some of the examples
where the initial points are generated randomly. If a ran-
dom point is generated close to an optimal solution, it can
result in fast convergence. However, if a random guess is
generated far from an existing solution, in a worst case
in the opposite location, then the convergence will be-
come much slower or even intractable. Overall, in the
absence of any a priori knowledge about the problem to
optimize, it is not possible to always make a good initial
guess. Therefore, all directions should be considered si-
multaneously, or more practically, the opposite direction
should be considered.
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